The Algebraic Group Model and its Applications
نویسندگان
چکیده
One of the most important tools for assessing hardness assumptions in cryptography is the Generic Group Model (GGM). Over the past two decades, numerous assumptions have been analyzed within this model. While a proof in the GGM can certainly provide some measure of confidence in an assumption, its scope is rather limited since it does not capture group-specific algorithms that make use of the representation of the group. To overcome this limitation, we propose the Algebraic Group Model (AGM), a model that lies in between the standard model and the GGM. It is the first restricted model of computation covering group-specific algorithms yet allowing to derive simple and meaningful security statements. We show that several important assumptions, among them the Computational Diffie-Hellman, the Strong Diffie-Hellman, and the interactive LRSW assumptions, are equivalent to the Discrete Logarithm (DLog) assumption in the AGM. On the more practical side, we prove tight security reductions for two important schemes in the AGM to DLog or a variant thereof: the BLS signature scheme and Groth’s zero-knowledge SNARK (Eurocrypt ’16), which is the most efficient SNARK for which only a proof in the GGM was known. Moreover, in combination with known lower bounds on the Discrete Logarithm assumption in the GGM, our results can be used to derive lower bounds for all the above-mentioned results in the GGM.
منابع مشابه
Applications of a group in general fuzzy automata
Let $tilde{F}=(Q,S,tilde{R},Z,omega,tilde{delta}, F_1,F_2)$ be a general fuzzy automaton and the set of its states be a group. The aim of this paper is the study of applications of a group in a general fuzzy automaton. For this purpose, we define the concepts of fuzzy normal kernel of a general fuzzy automaton, fuzzy kernel of a general fuzzy automaton, adjustable, multip...
متن کاملCategorically-algebraic topology and its applications
This paper introduces a new approach to topology, based on category theory and universal algebra, and called categorically-algebraic (catalg) topology. It incorporates the most important settings of lattice-valued topology, including poslat topology of S.~E.~Rodabaugh, $(L,M)$-fuzzy topology of T.~Kubiak and A.~v{S}ostak, and $M$-fuzzy topology on $L$-fuzzy sets of C.~Guido. Moreover, its respe...
متن کاملThe X-ray Transform and its Application in Nano Crystallography
In this article a review on the definition of the X- ray transform and some ofits applications in Nano crystallography is presented. We shall show that the X- raytransform is a special case of the Radon transform on homogeneous spaces when thetopological group E(n)- the Euclidean group - acts on ℝ2 transitively. First someproperties of the Radon transform are investigated then the relationship ...
متن کاملVoltage Differencing Buffered Amplifier based Voltage Mode Four Quadrant Analog Multiplier and its Applications
In this paper a voltage mode four quadrant analog multiplier (FQAM) using voltage differencing buffered amplifier (VDBA) based on quarter square algebraic identity is presented. In the proposed FQAM the passive resistor can be implemented using MOSFETs operating in saturationregion thereby making it suitable for integration. The effect of non idealities of VDBA has also been analyzed in this pa...
متن کاملWeak Algebraic Hyperstructures as a Model for Interpretation of Chemical Reactions
The concept of weak algebraic hyperstructures or Hv-structures constitutes a generalization of the well-known algebraic hyperstructures (semihypergroup, hypergroup and so on). The overall aim of this paper is to present an introduction to some of the results, methods and ideas about chemical examples of weak algebraic hyperstructures. In this paper after an introduction of basic definitions and...
متن کاملNumerical solution of Voltra algebraic integral equations by Taylor expansion method
Algebraic integral equations is a special category of Volterra integral equations system, that has many applications in physics and engineering. The principal aim of this paper is to serve the numerical solution of an integral algebraic equation by using the Taylor expansion method. In this method, using the Taylor expansion of the unknown function, the algebraic integral equation system becom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017